skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Popović, Miloš"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show efficient wide-tunable mm-wave-to-optical transduction (20 to 70 GHz at -9 to -18 dBc) using a triple-microring modulator. Integrated monolithically with a 18% bandwidth LNA, it generates sidebands with <−35 dBm RF input. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026
  2. We demonstrate a dual-cavity modulator based mm-wave to optical converter on GF45SPCLO platform. An optical energy conversion efficiency at -29.8 dB and a side-band SNR at 30.7 dB are reported. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  3. We demonstrate a Dual Active-Cavity RF modulator combining T-shaped spoked junction with a novel “half-rib” waveguide in a monolithic electronic-photonic platform. We measure a sideband efficiency of -52 dB at 66 GHz RF carrier frequency. 
    more » « less
  4. We demonstrate a Dual Active-Cavity RF modulator combining T-shaped spoked junction with a novel “half-rib” waveguide in a monolithic electronic-photonic platform. We measure a sideband efficiency of -52 dB at 66 GHz RF carrier frequency. 
    more » « less
  5. We use a general theory to show a new class of bandpass filter shapes for coupled-resonator filters that provides the lowest insertion loss and the narrowest bandwidth achievable for a given intrinsic Q and bandwidth. 
    more » « less
  6. We demonstrate a path to scalable, wavelength- multiplexed RF/mm-wave-photonic front-end systems-on-chip for radar and extreme massive MIMO arrays, in 300mm-foundry 45nm RF SOI CMOS. We demonstrate mm-wave-to-optical sensing elements comprising low-noise amplifiers (LNAs) mono- lithically integrated with triply-resonant photonic microring- resonator based modulators. The “photonic molecule” modulator concept breaks the conventional ring modulator conversion efficiency-bandwidth tradeoff and provides optimal performance RF-photonic applications, while supporting high bandwidth den- sities. We show a first experiment with projected noise figure of 24dB at 57GHz (30mW/element, -45dBm RF-input, 6dBm laser LO). The elements are tileable at small pitches, enabling photonic disaggregation of large-scale phased arrays. 
    more » « less
  7. We report a demonstration of a 3-channel wavelength-selective switch with individual channel bandwidths of 2 GHz and drop port loss below 1 dB, paving the way for efficient spectrum utilization in quantum networking applications. 
    more » « less
  8. We demonstrate a scheme for microring resonators to operate as standing-wave resonators while eliminating reflections and maintaining traveling-wave-resonator-like through-port response, potentially enabling interdigitated p-n junction microring modulators to achieve higher performance than other junction geometries. 
    more » « less
  9. We demonstrate device field characterization using NSOM collection and interaction measurement modes via the backside buried-oxide of large scale photonic circuits fabricated in monolithic electronics-photonics CMOS platforms (here a microdisk resonator) post-processed using flip-chip substrate-removal. 
    more » « less